

Contents lists available at SciVerse ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Phase formation in the $Li_2MoO_4-K_2MoO_4-In_2(MoO_4)_3$ system and crystal structures of new compounds $K_3InMo_4O_{15}$ and $LiK_2In(MoO_4)_3$

Klara M. Khal'baeva^a, Sergey F. Solodovnikov^{b,c}, Elena G. Khaikina^{a,d,*}, Yuliya M. Kadyrova^a, Zoya A. Solodovnikova^b, Olga M. Basovich^a

^a Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, Sakh'yanova St. 6, Ulan-Ude, 670047, Buryat Republic, Russia

^b Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Akad. Lavrent'ev Ave. 3, Novosibirsk 630090, Russia

^c Novosibirsk State University, Pirogov St. 2, Novosibirsk 630090, Russia

^d Buryat State University, Smolin St. 24a, Ulan-Ude, 670000, Buryat Republic, Russia

ARTICLE INFO

Article history: Received 10 November 2011 Received in revised form 4 January 2012 Accepted 5 January 2012 Available online 17 January 2012

Keywords: Indium Phase formation Non-quasibinary join Double polymolybdate Triple molybdate Crystal structure

1. Introduction

Double molybdates $M_x M'_y (MOQ_4)_z$ (M – univalent cation, M' – uni-, di-, tri- or tetravalent cations) are well-known and promising as ferroelectrics, solid electrolytes, laser, acousto-optical, luminescent and other inorganic materials [1–5]. The range of complex Mo(VI) oxide phases has been expanding over the past two decades, mainly, for account of triple molybdates revealed in the course of exploring ternary salt systems [6–14].

We have already reported in [10–17] about a detection, synthesis and structural characterization of two isostructural series of triple molybdates of lithium, univalent and trivalent cations. The structures of tetragonal triple molybdates Li₂M₃R(MoO₄)₄ (MR=TIAI, RbAI, RbGa, CsAI, CsGa, CsFe) [10] closely related to the cubic Cs₆Zn₅(MoO₄)₈ type [18,19], contain open frameworks formed by MoO₄-, LiO₄- and RO₄-tetrahedra with 12-coordinate M⁺ ions located in their large cavities. A more extensive isostructural series of triple molybdates LiMR₂(MoO₄)₄ (M=K, Rb, Tl; R=Ln, Bi) comprising 26 members has a structure being a stuffed derivative of the monoclinic BaNd₂(MoO₄)₄ structures, RO₈

ABSTRACT

XRD study of solid-phase interaction in the Li₂MoO₄–K₂MoO₄–In₂(MoO₄)₃ system was performed. The boundary K₂MoO₄–In₂(MoO₄)₃ system is an non-quasibinary join of the K₂O–In₂O₃–MoO₃ system where a new polymolybdate K₃InMo₄O₁₅ isotypic to K₃FeMo₄O₁₅ was found. In the structure (*a*=33.2905(8), *b*=5.8610(1), *c*=15.8967(4) Å, β =90.725(1)°, sp. gr. C2/*c*, Z=8, *R*(*F*)=0.0407), InO₆ octahedra, Mo₂O₇ diortho groups and MoO₄ tetrahedra form infinite ribbons {[In(MoO₄)₂(Mo₂O₇)]^{3–}}_∞ along the *b*-axis. Between the chains, 8- to 10-coordinate potassium cations are located. A subsolidus phase diagram of the Li₂MoO₄–K₂MoO₄–In₂(MoO₄)₃ system was constructed and a novel triple molybdate LiK₂In(MoO₄)₃ was revealed. Its crystal structure (*a*=7.0087(2), *b*=9.2269(3), *c*=10.1289(3) Å, β =107.401(1)°, sp. gr. *P*₂₁, *Z*=2, *R*(*F*)=0.0280) contains an open framework of vertex-shared MoO₄ tetrahedra, InO₆ octahedra and LiO₅ tetragonal pyramids with nine- and seven-coordinate potassium is an open framework channels.

© 2012 Elsevier Inc. All rights reserved.

polyhedra sharing vertices with MoO_4 tetrahedra form open layers linked via MO_{10} polyhedra and LiO_6 octahedra. Since eight-fold coordination is not characteristic of trivalent cations smaller than Lu^{3+} , LiKLu₂(MoO_4)₄ is the last member of this family.

Occurrence of two aforementioned distinct families of triple molybdates in Li₂MoO₄-M₂MoO₄-R₂(MoO₄)₃ systems (Fig. 1) raises the question about existence of triple molybdates containing (apart from lithium and a large monovalent cation) a medium-size trivalent cation such as In^{3+} or Sc^{3+} . The systems Li₂MoO₄-M₂MoO₄-R₂(MoO₄)₃ (R=In, Sc) have never been studied in detail before. The only reported LiIn(MoO₄)₂-MIn(MoO₄)₂ (M=K, Rb) joins [21,22] are eutectic with liquation.

This work deals with the study of phase formation in the $Li_2MoO_4-K_2MoO_4-In_2(MoO_4)_3$ system, constructing a subsolidus phase diagram of such system and determination of the composition and structure of a new triple molybdate $LiK_2In(MoO_4)_3$ formed in the system. In the course of this study, literature data on phase equilibrium in the $K_2MoO_4-In_2(MoO_4)_3$ boundary system were checked and corrected, and the structure of a newly revealed polymolybdate $K_3InMo_4O_{15}$ was determined.

2. Experimental

Commercially available chemically pure MoO₃, LiNO₃, KNO₃ and high-purity In₂O₃, Li₂CO₃ and K₂CO₃ were used as starting materials

^{*} Corresponding author at: Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, Sakh'yanova St. 6, Ulan-Ude, 670047, Buryat Republic, Russia. Fax: +7 301 2434753.

E-mail address: ekha@binm.bscnet.ru (E.G. Khaikina).

^{0022-4596/\$ -} see front matter \circledcirc 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2012.01.010

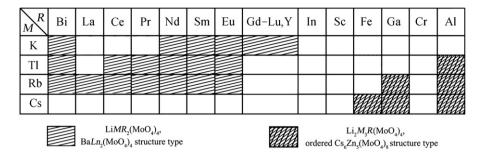


Fig. 1. The existence regions of isostructural series of triple molybdates of lithium, univalent and trivalent cations.

for the synthesis of simple, double and triple molybdates. Simple molybdates M_2MoO_4 (M=Li, K) and $K_2Mo_2O_7$ used as a flux for crystallization experiments were synthesized by annealing stoichiometric mixtures of alkali carbonates or nitrates with molybdenum trioxide for 80–100 h. The initial calcination temperature was 400 °C when M_2CO_3 was used or 350 °C when MNO₃ was taken, while the final temperature depended on the thermal stability of the final product. Indium molybdate was synthesized from oxides of indium(III) and molybdenum(VI) at 500–700 °C. Monophasity of the prepared substances was confirmed by powder X-ray diffraction (XRD) and thermal analysis. Thermal and X-ray characteristics of the obtained substances were in accord with the data of [23–25].

Small single crystals of the compounds were grown by spontaneous crystallization of molten ceramic samples or mixtures of constituent molybdates. Heating of ground mixtures, their isothermal holding and slow cooling of the melts were controlled automatically with an accuracy of $\pm 0.5^{\circ}$.

Monitoring of solid-state synthesis and phase equilibration were carried out by X-ray powder diffraction by using an automated D8 ADVANCE Bruker diffractometer (CuK_{α} radiation, secondary monochromator, maximal $2\theta = 100^{\circ}$, scan step $0.01-0.02^{\circ}$, exposition 1–10 s). The unit cell parameters were refined by the least-squares method using ICDD program package for preparing experimental standards.

Single crystal X-ray diffraction data for structure determination were collected at room temperature by using a Bruker–Nonius X8 Apex CCD area-detector diffractometer (MoK_{α} radiation, graphite monochromator, φ -scans with scan step of 0.5°). Data processing was accomplished using SAINT program; an absorption correction was applied with SADABS program [26]. The structure was solved and refined by using SHELX-97 package [27].

Differential thermal analysis was performed with an MOM OD-103 derivatograph.

3. Results and discussion

3.1. Phase formation in $Li_2MoO_4-K_2MoO_4-In_2(MoO_4)_3$ system

Information about the boundary elements of the Li_2MoO_4 - K_2MoO_4 - $In_2(MoO_4)_3$ system required for correct triangulation of the system was taken from literature or obtained by us.

The *T*–*x* diagram of the Li_2MoO_4 – K_2MoO_4 system was reported in [28,29]. The single intermediate phase LiKMoO₄ was found to melt congruently and to undergo some polymorphic transformations, according to [30–33]. Lattice parameters of the form of LiKMoO₄, which was obtained us, were close to those reported in [33].

Phase formation in the Li₂MoO₄–In₂(MoO₄)₃ system and the double molybdates LiIn(MoO₄)₂ and Li₃In(MoO₄)₃ formed in the system were described in literature in reasonable detail [34–38]. According to [37], LiIn(MoO₄)₂ is dimorphic: the low-temperature modification has wolframite-like structure undergoing at 700 °C

a phase transition with changing octahedral coordination of molybdenum to tetrahedral one. The second compound, Li₃In(- MoO_4)₃, belongs to the family of isostructural phases Li₃R(MoO_4)₃ (R=In, Sc, Fe, Cr, Ga, Al) [38–41] crystallizing in the orthorhombic structure type of lyonsite α -Cu₃Fe₄(VO₄)₆ [42].

We have performed a repeated X-ray diffraction study of the $Li_2MoO_4-In_2(MoO_4)_3$ system using samples containing 90, 77.5, 75, 72.5, 70, 67.5, 65, 60, 50 and 25 mol% of Li_2MoO_4 . A detailed examination of samples having composition close to 75 mol% Li_2MoO_4 is explained with our attempt to find a homogeneity range in $Li_3In(MoO_4)_3$ having the lyonsite structure that does not preclude the presence of such range [42].

It has been confirmed that the studied system is quasi-binary and forms two intermediate phases having composition of 1:1 and 3:1 in the subsolidus region. Crystallographic characteristics of the obtained compounds agree with the data of [43]. It has been shown for the first time that $Li_3In(MOO_4)_3$ has a marked homogeneity range extending toward $In_2(MOO_4)_3$ and reaching 5 mol% at 600–650 °C.

According to data [34,35], three double molybdates of 1:1, 3:1, and 5:1 composition occur in the K_2MOO_4 – $In_2(MOO_4)_3$ system. Orthorhombic KIn(MOO_4)_2 has its own structure type with a framework of InO_6 octahedra and MOO_4 tetrahedra [44]. $K_5In(MOO_4)_4$ is dimorphic, the structures of both modifications related to the palmierite $K_2Pb(SO_4)_2$ type [45–47]. $K_3In(MOO_4)_3$ also has two forms [34], but their structures are unknown yet.

By annealing stoichiometric mixtures of K_2MoO_4 and $In_2(MoO_4)_3$, we have synthesized $K_5In(MoO_4)_4$ and $KIn(MoO_4)_2$ having unit cell parameters close to those found in [34,35]. However, our numerous attempts to prepare $K_3In(MoO_4)_3$ described in [34] have failed. Because of this reason we have repeatedly studied the full concentration range of the K_2MoO_4 – $In_2(MoO_4)_3$ system at subsolidus temperatures. Reaction mixtures containing 90, 83.3, 78, 75, 70, 65, 64.3, 60, 50 and 25 mol% of K_2MoO_4 were annealed and then studied by using X-ray diffraction phase analysis. Temperature (from 300 °C up to an appearance of a liquid phase) was increased with a step of 30–50 °C, and samples were annealed at each step for 50–100 h with daily intermittent grindings.

We found that the phase equilibrium pattern in the studied system substantially more complex than that shown in [34]. The quasi-binary character of the $KIn(MoO_4)_2-In_2(MoO_4)_3$ range is beyond doubt since XRD patterns of annealed samples in the range show only lines of the boundary compounds with intensities corresponding to their relative content in the reaction mixtures. However, X-ray powder patterns of samples in the K₅In(MoO₄)₄-KIn(MoO₄)₂ range annealed at 450 °C and above, revealed reflections of a new phase, resembling in their locations and intensities the diffraction pattern of K₃FeMo₄O₁₅ described in [48–50]. These findings suggest the occurrence of a similar compound in the K₂O–In₂O₃–MoO₃ system and the resulting partial violation of quasibinarity of the join K₂MoO₄–In₂(MoO₄)₃.

Such suggestion was supported by our data on a partial nonquasibinarity of the M_2MoO_4 –Fe₂(MoO₄)₃ joins of the M_2O – Fe₂O₃–MoO₃ (M=Rb, Cs) systems apparently caused by a high thermodynamic stability of M_3 FeMo₄O₁₅–Fe₂O₃ pair [51]. Such hypothesis was experimentally proved when a single-phase K₃InMo₄O₁₅ was synthesized by annealing a stoichiometric mixture of K₂MoO₄, In₂(MoO₄)₃, and MoO₃ at 450–600 °C for 100 h. The X-ray pattern of the compound was satisfactory indexed assuming the isostructurality to K₃FeMo₄O₁₅. The compound composition is confirmed by X-ray structure analysis of single crystals obtained when we tried to grow crystals of K₃In(MoO₄)₃ described in [34]. Notice that the calculated powder pattern of K₃InMo₄O₁₅ corresponds to a diffractogram of the sample with the same composition obtained using solid state synthesis.

Revealing, synthesis and determination of the structure of a new double polymolybdate K₃InMo₄O₁₅ (see Section 3.2) allowed us to interpret correctly the experimental data on the K₂MoO₄- $In_2(MoO_4)_3$ system. The diagram of phase fields of the system samples annealed at 450 °C (Fig. 2) shows that K₂MoO₄: In₂(MoO₄)₃=83.3:16.7 and 50:50 samples corresponding to K₅In(MoO₄)₄ and KIn(MoO₄)₂ compounds are single-phase; samples of the $K_2MoO_4-K_5In(MoO_4)_4$ and $KIn(MoO_4)_2-In_2(MoO_4)_3$ ranges are two-phase, and samples of the K₅In(MoO₄)₄-KIn $(MoO_4)_2$ range are three-phase. Furthermore, at 300–400 °C, i.e., beyond the temperature range of K₃InMo₄O₁₅ formation, the quasibinarity of the K₂MoO₄-In₂(MoO₄)₃ join is broken by metathesis processes resulting in K₂Mo₂O₇ and In₂O₃ formation. Thus, the obtained results testify that $K_2MoO_4-In_2(MoO_4)_3$ is an unstable (non-quasibinary) join of the K₂O-MoO₃-In₂O₃ ternary oxide system. The quasibinarity of the K₂MoO₄-In₂O₃ join intersecting the K_2MoO_4 – $In_2(MoO_4)_3$ join in this ternary oxide system was confirmed by XRD analysis.

Previously, a partial non-quasibinarity in the subsolidus region of the $M_2MoO_4-R_2(MoO_4)_3$ systems was found only for M=Na, R=Fe, Cr [52]. Revealing by us a non-quasibinarity in the $M_2MoO_4-Fe_2(MoO_4)_3$ (M=Rb, Cs) systems [51] and $K_2MoO_4 In_2(MoO_4)_3$ (this work) allows to say that the non-quasibinarity is characteristic of similar systems. The same features have the systems $M_2XO_4-AXO_4$ (X=Mo, W) [53] and $M_2WO_4-R_2(WO_4)_3$ [54,55] that confirms abundance of a such phenomenon connected with metathesis processes in the systems containing molybdates and tungstates of uni- and bivalent (trivalent) metals. Practically, these observations are very important for developing solid state reaction conditions and correct studies of multicomponent systems.

Taking into account the literature and our data on the boundary systems, phase formation in the Li₂MoO₄–K₂MoO₄–In₂(MoO₄)₃ system has been studied by using the "intersection joins" method [56,57]. For such purpose, we carried out XRD phase analysis of the samples corresponding to the intersection points of the joins connecting points of the components and boundary compounds. It makes possible to reveal quasibinary joins and to perform triangulation of the system. Since the range of the K₂MoO₄–In₂(MoO₄)₃ system rich in potassium molybdate was found to be non-quasibinary, the study of the L₂MoO₄–KLiMoO₄–KIn(MoO₄)₂–In₂(MoO₄)₃ region. Nevertheless,

MoO ₄ 8	3.33 6	4.28 50	In ₂ (MoO ₄
$\begin{array}{c} K_2 MoO_4 \\ + \\ K_5 In(MoO_4) \end{array}$	$ \begin{array}{c} +\\ K_{3}InMo_{4}O_{15}\\ +\\ In_{2}O_{3} \end{array} $	$ \begin{array}{c} + \\ K_{3}InMo_{4}O_{15} \\ + \\ In_{2}O_{3} \end{array} $	$KIn(MoO_4)_2 + In_2(MoO_4)_3$
	$K_{5}In(MoO_{4})_{4}$	$KIn(MoO_4)_2$	

Fig. 2. Phase fields diagram of the K_2MoO_4 - $In_2(MoO_4)_3$ system at 450 °C.

we also examined samples corresponding to the compositions of the intersection points of the joins originating from K₂MoO₄, K₅In(MoO₄)₄ and "K₃In(MoO₄)₃" compositions and falling into the studied region. The obtained results are presented in Fig. 3. A new compound LiK₂In(MoO₄)₂ is detected at the intersection point of the LiIn(MoO₄)₂-K₂MoO₄ and LiKMoO₄-KIn(MoO₄)₂ joins. The joins LiIn(MoO₄)₂-KIn(MoO₄)₂, Li₃In(MoO₄)₃-KIn (MoO₄)₂, Li₂MoO₄-KIn(MoO₄)₂ and Li₂MoO₄-LiK₂In(MoO₄)₃ divide the region Li₂MoO₄-LiKMoO₄-KIn(MoO₄)₂-In₂(MoO₄)₃ into five subsystems.

The join LiKMoO₄–KIn(MoO₄)₂, where the intermediate phase is formed, was studied with a step of ~5–10 mol%, and in the vicinity of a new compound – with a step of 1.5–2.5 mol%. XRD pattern of the sample with composition corresponding to LiK₂In (MoO₄)₃ is characterized with a specific set of reflections. It is noteworthy that the lack of triple molybdates in the LiIn(MoO₄)₂– KIn(MoO₄)₂ join is in accord with the data of [21,22].

Single-phase sample of $LiK_2In(MOO_4)_3$ was prepared by annealing of stoichiometric mixtures of $LiKMOO_4$ and $KIn(MOO_4)_2$ or simple molybdates at 450 °C for 80–100 h. When using Li_2MOO_4 , K_2MOO_4 and indium nitrate are as starting materials, annealing is better to start from 350 °C in order to avoid reagent spillage as a result of strong effervescing.

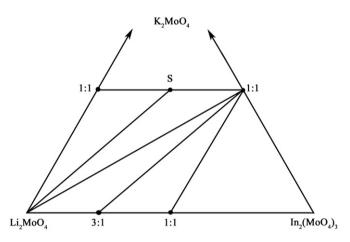


Fig. 3. Subsolidus phase diagram of the Li_2MoO_4–K_2MoO_4–In_2(MoO_4)_3 system (t=450 °C) S – LiK_2In(MoO_4)_3.

Table 1 Crystal data and structure refinement details for $K_3InMo_4O_{15}.$

Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions:	
<i>a</i> , Å	33.2905(8)
b, Å	5.8610(1)
c, Å	15.8967(4)
β, °	90.725(1)
$V(Å^3)/Z$	3101.5(1)/8
Calculated density, $g \text{ cm}^{-3}$	3.666
$\mu(MoK_{\alpha}), mm^{-1}$	5.486
Crystal size, mm	$0.15\times0.08\times0.005$
θ range (°) for data collection	1.22-30.79
Reflections collected/unique	7919/2877 [R(int)=0.0290]
No. of variables	210
Goodness-of-fit on F^2 (GOF)	1.013
Final <i>R</i> indices $[I > 2\sigma(I)]$	R(F) = 0.0407,
	$wR(F^2) = 0.1120$
R indices (all data)	R(F) = 0.0486,
	$wR(F^2) = 0.1248$
Largest difference peak/hole ($e \text{ Å}^{-3}$)	1.873/-1.863

Triple molybdate $LiK_2In(MoO_4)_3$ melts at 590 °C; it is insoluble in water and usual organic solvents and soluble in HCl aqueous solution.

 Table 2

 Atomic coordinates and equivalent isotropic displacement parameters for K₃InMo₄O₁₅.

Atom	x/a	y/b	z/c	U_{eq} (Å ²)
Mo(1)	0.0659(1)	-0.5044(1)	0.2326(1)	0.016(1)
Mo(2)	0.3518(1)	0.5119(1)	-0.1136(1)	0.016(1)
Mo(3)	0.2174(1)	-0.0125(1)	-0.1516(1)	0.014(1)
Mo(4)	0.0569(1)	0.4659(1)	-0.0014(1)	0.020(1)
In	0.3200(1)	0.0008(1)	0.2596(1)	0.014(1)
K(1)	0.3142(1)	0.0340(3)	0.0106(1)	0.026(1)
K(2)	0.0136(1)	-0.0125(2)	0.1289(1)	0.026(1)
K(3)	0.1037(1)	-0.0230(3)	-0.1363(2)	0.034(1)
O(1)	0.0437(2)	-0.2730(10)	0.2801(4)	0.030(1)
O(2)	0.1167(2)	-0.5138(8)	0.2617(5)	0.027(1)
O(3)	0.0431(2)	-0.7464(10)	0.2709(4)	0.030(1)
O(4)	0.0562(3)	-0.4851(8)	0.1173(4)	0.034(2)
O(5)	0.1833(1)	0.2201(8)	-0.1724(3)	0.023(1)
O(6)	0.1890(1)	-0.2742(7)	-0.1552(3)	0.022(1)
O(7)	0.3539(2)	0.4703(9)	-0.0057(5)	0.032(1)
O(8)	0.2560(2)	-0.0174(7)	-0.2254(5)	0.023(1)
O(9)	0.2368(2)	0.0220(8)	-0.0524(5)	0.032(1)
O(10)	0.3285(2)	0.7822(8)	-0.1358(3)	0.029(1)
O(11)	0.0481(2)	0.1834(9)	-0.0288(3)	0.035(1)
O(12)	0.3232(2)	0.2856(8)	-0.1586(4)	0.031(1)
O(13)	0.1037(2)	0.5390(11)	-0.0377(7)	0.051(2)
O(14)	0.3995(2)	0.5056(10)	-0.1547(7)	0.046(2)
O(15)	0.0231(2)	0.6445(11)	-0.0516(4)	0.045(1)

Table 3

Selected interatomic distances (Å) for K₃InMo₄O₁₅.

Mo(1)-tetrahedron		Mo(2)-tetrahedro	n	
Mo(1)-O(1)	1.723(5)	Mo(2)-O(14)	1.725(8)	
Mo(1)-O(3)	1.723(5)	Mo(2)-O(7)	1.732(7)	
Mo(1) - O(2)	1.749(6)	Mo(2)-O(12)	1.778(5)	
Mo(1) - O(4)	1.860(7)	Mo(2)-O(10)	1.798(5)	
< Mo(1)-0 >	1.764	< Mo(2)-0 >	1.758	
Mo(3)-tetrahedron		Mo(4)-tetrahedron		
Mo(3)-O(9)	1.708(7)	Mo(4)-O(13)	1.723(8)	
Mo(3)-O(8)	1.753(7)	Mo(4)-O(15)	1.724(6)	
Mo(3)-O(6)	1.802(4)	Mo(4)-O(11)	1.736(5)	
Mo(3)-O(5)	1.802(5)	Mo(4)-O(4)	1.908(7)	
< Mo(3)-O >	1.766	< Mo(4)-0 >	1.773	
K(1)-polyhedron		K(2)-polyhedron		
K(1)-O(9)	2.754(7)	K(2)-O(15)	2.761(6)	
K(1)-O(6)	2.759(5)	K(2)-O(11)	2.769(6)	
K(1)-O(13)	2.796(9)	K(2)-O(1)	2.852(6)	
K(1)-O(10)	2.803(5)	K(2)-O(3)	2.905(6)	
K(1)-O(7)	2.893(6)	K(2)-O(14)	2.916(8)	
K(1)-O(5)	2.948(5)	K(2)–O(3)	2.934(6)	
K(1)-O(12)	3.085(6)	K(2)-O(11')	2.999(6)	
K(1)-O(9)	3.182(6)	K(2)-O(1')	3.009(6)	
$\langle K(1)-0 \rangle$	2.903	K(2) - O(4)	3.118(6)	
		K(2) - O(4')	3.407(6)	
		<k(2)-0></k(2)-0>	2.967	
K(3)-polyhedron		In-octahedron		
K(3)-O(7)	2.664(7)	In-O(10)	2.110(5)	
K(3)-O(11)	2.809(6)	In-O(12)	2.125(5)	
K(3)-O(3)	2.828(6)	In-O(2)	2.141(6)	
K(3)-O(1)	2.949(6)	In-O(6)	2.144(5)	
K(3)-O(13)	3.007(8)	In-O(5)	2.147(4)	
K(3)-O(5)	3.067(5)	In-O(8)	2.149(6)	
K(3)-O(2)	3.194(6)	$\langle In-0 \rangle$	2.136	
K(3)-O(6)	3.216(5)	. ,		
K(3)-O(14)	3.327(11)			
<k(3)-o></k(3)-o>	3.007			

3.2. Crystal structure of $K_3 In Mo_4 O_{15}$

Determination of the character of phase equilibria in the $K_2MoO_4-In_2(MoO_4)_3$ system became possible due to detection and structural characterization of $K_3InMo_4O_{15}$, which, as we expected, is proved to be isostructural with $K_3FeMo_4O_{15}=K_3Fe$ $(MoO_4)_2(Mo_2O_7)$ [48–50]. Crystal and structure refinement data for $K_3InMo_4O_{15}$ are summarized in Table 1; the atomic coordinates, equivalent isotropic atomic displacement parameters and selected interatomic distances are listed in Tables 2 and 3. The crystal structure data can be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany, (fax: +49 7247 808 666; e-mail: mcrysdata@fiz. karlsruhe.de) on quoting the depository number CSD 423175. The general view of the structure is shown in Fig. 4(a).

molybdate, preliminary established with XRD analysis, was con-

firmed in the course of crystal structure determination.

In K₃InMo₄O₁₅ structure, all atoms are in general positions. Four kinds of the molybdenum atoms have tetrahedral coordination with distances Mo–O 1.708(7)–1.908(7) Å. The longest bonds Mo(1)–O(4) 1.860(7) Å and Mo(4)–O(4) 1.908(7) Å correspond to bridge oxygen distances in separate tetrahedral dimer

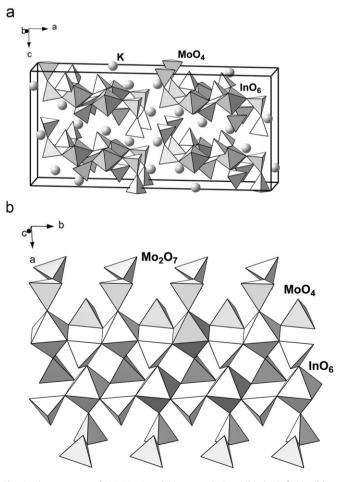


Fig. 4. The structure of $K_3InMo_4O_{15}$: (a) a general view; (b) the infinite ribbon $\{[In(MoO_4)_2(Mo_2O_7)]^{3-}\}_{\infty}.$

Table 5

 $Mo_2O_7^{2-}$. The $Mo_2O_7^{2-}$ pyroanion has nearly eclipsed conformation with Mo(1)-O(4)-Mo(4) angle of $163.9(4)^{\circ}$. A close configuration of dimolybdate pyroanion was found in $MgMo_2O_7$ [58]. All indium atoms are crystallographically equivalent and have a common distorted octahedral coordination; the In–O bond lengths are 2.110(5)–2.149(6) Å, the O–In–O angles change from 88.1(2) to 93.1(2)°. Three kinds of the potassium atoms have coordination numbers of 8 to 10 (Table 3). In the structure, we can see infinite complex-shaped ribbons {[In(MOO_4)₂(Mo_2O_7]^{3–}]_∞ running along the *b*-axis and containing the InO₆ octahedra, terminal Mo_2O_7 groups and bridge MOO_4 tetrahedra connecting two or three InO₆ octahedra (Fig. 4(b)). Between the chains potassium cations are located (Fig. 4(a)). Other structure details were described early for isostructural K_3 FeMo₄O₁₅ [50].

The interesting feature of the structure is a clearly pronounced pseudo-period c' = c/2 and a mirror pseudo-symmetry normal to the same axis. It suggests a considerable probability of existing a distortional high-temperature phase transition into a phase with a possible space group C2/m and the *c* parameter decreased in half. The same phenomenon may be also expected for K₃FeMo₄O₁₅.

Table 4 Crystal data and structure refinement details for LiK₂In(MoO₄)₃.

Crystal system	Monoclinic
Space group	P2 ₁
Unit cell dimensions	a=7.0087(2) Å,
	b=9.2269(3) Å,
	c=10.1289(3) Å,
	$\beta = 107.401(1)^{\circ}$
$V(Å^3)/Z$	625.04(3)/2
Calculated density, g cm ⁻³	3.612
$\mu(MoK_{\alpha}), mm^{-1}$	5.479
Crystal size, mm	$0.10 \times 0.07 \times 0.06$
θ range (deg) for data collection	2.11-32.60
Reflections collected/unique	6630/4271 [R(int)=0.0233]
No. of variables	173
Goodness-of-fit on F^2 (GOF)	1.033
Final <i>R</i> indices $[I > 2\sigma(I)]$	R(F) = 0.0280,
	$wR(F^2) = 0.0522$
R indices (all data)	R(F) = 0.0306,
	$wR(F^2) = 0.0532$
Largest difference peak/hole ($e \text{ Å}^{-3}$)	1.789/-1.734

3.3. Crystal structure of LiK₂In(MoO₄)₃

Crystallographic data and results of $LiK_2In(MOO_4)_3$ structure refinement are presented in Table 4; the atomic coordinates, equivalent isotropic atomic displacement parameters and selected interatomic distances are given in Tables 5 and 6. The crystal structure data can be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany, (fax: +49 7247 808 666; e-mail: crysdata@fiz.karls ruhe.de) on quoting the depository numbers CSD 423176. The general view of the structure is shown in Fig. 5.

In the acentric structure of LiK₂In(MoO₄)₃, all atoms are located in general positions. Three kinds of the molybdenum atoms have a common tetrahedral coordination and distances Mo–O 1.720(4)–1.801(3) Å. The cations In³⁺ are located in oxygen octahedra with bond lengths In–O 2.114(3)–2.163(4) Å.

Table 6

Selected interatomic distances (Å) for LiK₂In(MoO₄)₃.

Mo(1)-tetrahedron		Mo(2)-tetrahedron		Mo(3)-tetrahedron	
Mo(1)-O(1) Mo(1)-O(2) Mo(1)-O(3) Mo(1)-O(4) ⟨Mo(1)-O⟩ In-octahedro	1.725(4) 1.748(4) 1.792(3) 1.801(3) 1.767	$\begin{array}{c} Mo(2)-O(5)\\ Mo(2)-O(6)\\ Mo(2)-O(7)\\ Mo(2)-O(8)\\ < Mo(2)-O \end{array}$	1.720(4) 1.736(4) 1.775(4) 1.799(3) 1.758 K(1)-poly	Mo(3)-O(9) Mo(3)-O(10) Mo(3)-O(11) Mo(3)-O(12) <mo(3)-o> thedron</mo(3)-o>	1.723(4) 1.739(4) 1.796(4) 1.800(3) 1.765
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		K(1)-O(1) 2.651(4) K(1)-O(10) 2.700(4) K(1)-O(5) 2.770(4) K(1)-O(2) 2.780(4) K(1)-O(12) 2.826(4) K(1)-O(12) 2.826(4) K(1)-O(6) 3.181(4) K(1)-O(11) 3.654(4) K(1)-O(11) 3.654(4) K(1)-O(12) 2.948		4) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4)	
K(2)-polyhedron		Li-polyhedron			
$\begin{array}{c} K(2)-O(9)\\ K(2)-O(1)\\ K(2)-O(5)\\ K(2)-O(1)\\ K(2)-O(1)\\ K(2)-O(4)\\ K(2)-O(12)\\ K(2)-O(10)\\ \langle K(2)-O\rangle \end{array}$	2.68 2.77 2.77 2.93 3.42	1(4) 66(4) (5(5) 8(4) (2(4) (9(5)) (8(5)) (0)		2.005(2.010(2.053) 2.113(12 2.255(2.087	10) 10) 10)

Atomic coordinates and equivalent isotropic displacement parameters for $\text{LiK}_2\text{In}(\text{MoO}_4)_3$.

Atom	x/a	y/b	z/c	U _{eq} (Ų)
Mo(1)	0.80454(5)	0.32843(4)	0.81174(4)	0.01172(8)
Mo(2)	0.57175(5)	0.71572(5)	-0.07909(4)	0.01290(8)
Mo(3)	0.95177(5)	0.21316(4)	0.45816(4)	0.01173(8)
In	0.72164(4)	0.90414(3)	0.26193(3)	0.00910(6)
K(1)	0.15969(17)	-0.00207(13)	0.79700(13)	0.0244(3)
K(2)	0.4538(3)	0.4940(3)	0.4206(2)	0.0945(10)
0(1)	0.8317(6)	0.1575(5)	0.7506(4)	0.0273(9)
O(2)	0.8228(5)	0.3080(4)	0.9867(4)	0.0202(8)
0(3)	0.0091(5)	0.4354(4)	0.7943(4)	0.0162(7)
0(4)	0.5641(4)	0.3937(4)	0.7083(3)	0.0146(6)
O(5)	0.5304(6)	0.8743(4)	-0.1727(4)	0.0296(10)
0(6)	0.7831(5)	0.6297(5)	-0.0966(4)	0.0243(9)
O(7)	0.6223(5)	0.7496(4)	0.0062(4)	0.0186(8)
O(8)	0.3596(5)	0.5974(4)	-0.1407(4)	0.0178(8)
0(9)	0.7859(5)	0.3468(4)	0.4697(4)	0.0254(9)
O(10)	0.0257(6)	0.2500(4)	0.3123(4)	0.0222(8)
0(11)	0.8313(5)	0.0395(4)	0.4432(4)	0.0177(7)
0(12)	0.1707(5)	0.2193(4)	0.6067(3)	0.0167(7)
Li	0.9488(13)	0.1493(10)	0.1279(10)	0.0213(19)

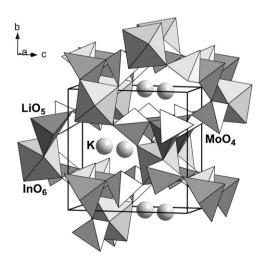


Fig. 5. A general view of the structure of LiK₂In(MoO₄)₃.

The lithium cations possess a fairly distorted tetragonal pyramidal coordination with distances Li-O 2.01(1)-2.25(1) Å.

In the structure of $LiK_2In(MoO_4)_3$, the MoO₄ tetrahedra, InO_6 octahedra and LiO₅ tetragonal pyramids are connected via their common vertices to form a 3D mixed open framework penetrated with channels along the *a* axis (Fig. 5). The channel cavities of the polyhedral framework contain two kinds of the potassium ions with coordination numbers 9 and 7 (Table 6).

Acknowledgments

The authors are grateful to Dr. Dmitry Yu. Naumov and Dr. Natalia V. Kuratieva for collecting and processing X-ray single-crystal diffraction data on a Bruker-Nonius X8 Apex CCD diffractometer. The study has been carried out with a financial support of the Russian Foundation for Basic Research (Grant No. 03-08-00384) and the International Center for Diffraction Data (Grant No. 98-15).

Appendix A. Supplementary materials

Supplementary materials associated with this article can be found in the online version at doi:10.1016/i.issc.2012.01.010.

References

- [1] A.A. Evdokimov, V.A. Efremov, V.K. Trunov, et al., Soedineniya Redkozemelnykh Elementov. Molibdaty. Volframaty [Rare-earth Compounds. Molybdates, Tungstates], Nauka, Moscow, 1991. 267 pp. (in Russian).
- [2] V.K. Trunov, V.A. Efremov, Yu.A. Velikodny, I. Kristallokhimiya, Svoistva Dvoinykh Molibdatov i Volframatov [Crystal Chemistry and Properties of Double Molybdates and Tungstates], Nauka, Leningrad, 1986. 173 pp. (in Russian).
- [3] M.V. Mokhosoev, Zh.G. Bazarova, Slozhnye Oksidy Molibdena i Volframa s Elementami I-IV Grupp [Complex Oxides of Molybdenum and Tungsten with Elements of Groups I-IV], Nauka, Moscow, 1990. 256 pp. (in Russian).
- [4] A.A. Kaminskii, Neorganicheskie Materialy 20 (1984) 901. in Russian.
- [5] V.A. Isupov, Ferroelectrics 321 (2005) 63.
- [6] N.M. Kozhevnikova, M.V. Mokhosoev, Troinye Molibdaty [Triple Molybdates], Izd, BGU, Ulan-Ude, 2000. 297 pp. (in Russian).
- B.G. Bazarov, D.Sc. Thesis (Physics), Ulan-Ude, Russia, 2008, pp. 370.
- [8] E.T. Khobrakova, V.A. Morozov, S.S. Khasanov, et al., Solid State Sci. 7 (2005) 1397.
- [9] Z.A. Solodovnikova, S.F. Solodovnikov, E.S. Zolotova, Acta Crystallogr.: Cryst. Struct. Commun. C 62 (2006) i6.
- [10] S.F. Solodovnikiv, E.G. Khaikina, Z.A. Solodovnikov, et al., Dokl. Chem. (Engl. Transl.) 416 (2007) 207.
- [11] K.M. Khal'baeva, E.G. Khaikina, Russ. J. Inorg. Chem. (Engl. Transl.) 45 (2000) 257.
- [12] O.M. Basovich, E.G. Khaikina, E.V. Vasil'ev, A.M. Frolov, Russ. J. Inorg. Chem. (Engl. Transl.) 40 (1995) 1966.
- O.M. Basovich, E.G. Khaikina, Russ. J. Inorg. Chem. (Engl. Transl.) 45 (2000) 1409.
- O.M. Basovich, E.G. Khaikina, S.F. Solodovnikov, G.D. Tsyrenova, J. Solid State [14] Chem. 178 (2005) 1580.
- [15] O.M. Basovich, E.G. Khaikina, Russ. J. Inorg. Chem. (Engl. Transl.) 51 (2006) 1082

- [16] R.F. Klevtsova, L.A. Glinskaya, V.I. Alekseev, et al., J. Struct. Chem. (Engl. Transl.) 34 (1993) 789.
- [17] V.A. Morozov, B.I. Lazoryak, V.A. Smirnov, et al., Russ. J. Inorg. Chem. (Engl. Transl.) 46 (2001) 873.
- [18] S.F. Solodovnikov, P.V. Klevsov, L.A. Glinskaya, R.F. Klevtsova, Kristallografiya 32 (1987) 618. in Russian.
- [19] M. Mueller, B.O. Hildmann, Th. Hahn, Acta Crystallogr. C 43 (1987) 184.
- [20] I.I. Kiseleva, M.I. Sirota, R.I. Ozerov, et al., Kristallografiya 24 (1979) 1277. in Russian
- [21] N.N. Smirnyagina, N.M. Kozhevnikova, F.P. Alekseev, M.V. Mokhosoev, in: All-Union Scientific Meeting in Chemistry and Technologies of Rare Metals, Frunze, USSR, 1982, Book of Abstracts, pp.64 (in Russian).
- [22] N.N. Smirnyagina, N.M. Kozhevnikova, F.P. Alekseev, M.V. Mokhosoev, Zh. Neorg. Khim. 28 (1983) 1582. in Russian.
- [23] E.I. Get'man, Izomorfnoe Zameshchenie v Molibdatnykh i Volframatnykh Sistemakh [Isomorphic Substitution in Molybdate and Tungstate Systems], Nauka, Novosibirsk, 1985. 214 pp. (in Russian).
- [24] ICDD PDF-2 Data Base, Cards # # 12-0763, 72-0735, pp. 72-1894.
- [25] V.K. Trunov, L.M. Kovba, Vestnik Moskovskogo Universiteta Khimiya 8 (1967)
- 114. in Russian. [26] SAINT (Version 7.03), SADABS (Version 2.11), Bruker AXS Inc., Madison, Wisconsin, 2004.
- [27] G.M. Sheldrick, SHELX-97, Release 97-2, University of Goettingen, 1997.
- [28] F. Hoermann, Z. Anorg. Allg. Chem. 177 (1928) 145.
- [29] I.N. Belyaev, Russ. J. Inorg. Chem. (Engl. Transl.) 6 (1961) 602.
- [30] P.V. Klevtsov, S.V. Mel'nikova, R.F. Klevtsova, A.I. Kruglik, Sov. Phys. Crystallogr. (Engl. Transl.) 33 (1988) 692.
- [31] K. Okada, J. Ossaka, J. Solid State Chem. 37 (1981) 325.
- [32] ICDD PDF-2 Data Base, Card # 28-0579.
- [33] I.A. Gudkova, Z.A. Solodovnikova, S.F. Solodovnikov, et al., Russ. J. Inorg.
- Chem. (Engl. Transl.) 56 (2011) 1443.
- [34] Yu.A. Velikodny, PhD Thesis (Chemistry), Moscow, USSR, 1975, p. 121. [35] Yu.A. Velikodny, V.K. Trunov, N.I. Markelova, Russ. J. Inorg. Chem. (Engl.
- Transl.) 15 (1970) 1587. [36] Yu.A. Velikodny, V.A. Efremov, V.K. Trunov, Kristallografiya 25 (1980) 165. in Russian.
- [37] M. Maczka, J. Hanuza, A. Pietraszko, J. Solid State Chem. 154 (2000) 498.
- [38] P.V. Klevtsov, Sov. Phys. Crystallogr. (Engl. Transl.) 15 (1970) 682.
- [39] R.F. Klevtsova, S.A. Magarill, Kristallografiya 15 (1970) 710. in Russian.
- [40] U. Kolitsch, E. Tillmanns, Acta Crystallogr. E 59 (2003) i55.
- [41] L. Sebastian, Y. Piffard, A.K. Shukla, et al., J. Mater. Chem. 13 (2003) 1797.
- [42] J.P. Smith, P.C. Stair, K.R. Poeppelmeier, Chem. Eur. J. 12 (2006) 5944.
- [43] ICDD PDF-2 Data Base, Cards # # 27-1245, 52-0491.
- [44] R.F. Klevtsova, P.V. Klevtsov, Kristallografiya 16 (1971) 292. in Russian.
- [45] B.I. Lazoryak, V.A. Efremov, Kristallografiya 32 (1987) 378. in Russian.
- [46] B.I. Lazoryak, Russ. Chem. Rev. (Engl. Transl.) 65 (1996) 287.
- [47] O.V. Kudin, V.A. Efremov, V.K. Trunov, Yu.A. Velikodny, Zh. Neorg. Khim. 26 (1981) 2734, in Russian.
- [48] A. Kirfel, K. Petrov, St. Karagiozova. Z. Kzistallogr. 160 (1982) 153.
- [49] Z.A. Solodovnikova, S.F. SolodovnikovAll-Russian Scientific Conference devoted to the 70th Anniversary of Prof. M.V. Mokhosoev, Ulan-Ude, Russia, 27-30 June 2002, Book of Abstracts, p. 82 (in Russian).
- [50] M. Maczka, A. Pietraszko, W. Paraguassu, et al., J. Phys.: Condens. Matter 21 (2009) 095402. (8 pp.).
- [51] K.M. Khal'baeva, S.F. Solodovnikov, E.G. Khaikina, et al., J. Solid State Chem. 183 (2010) 712.
- [52] V.K. Trunov, V.A. Efremov, Zh. Neorg. Khim. 16 (1971) 2026. in Russian.
- [53] S.F. Solodovnikov, D.Sc. Thesis (Chemistry), Novosibirsk, Russia, 2000, p. 424.
- [54] M.V. Mokhosoev, F.P. Alekseev, V.L. Butukhanov, Dvoinve Molibdaty i Volframaty [Double Molybdates and Tungstates], Nauka, Novosibirsk, 1981. 135 pp. (in Russian).
- [55] M.V. Mokhosoev, F.P. Alekseev, Zh. Neorg. Khim. 29 (1984) 499. in Russian.
- [56] W. Guertler, Z. Anorg. Allg. Chem. 154 (1926) 439.
- [57] A.M. Zakharov, Fazovye Diagrammy Dvoinykh i Troinykh Sistem [Phase Diagrams of Binary and Ternary Systems], Metallurgiya, Moscow, 1978. 296 pp. (in Russian).
- [58] K. Stadnicka, J. Haber, R. Kozlowski, Acta Crystallogr. B33 (1977) 3859.